Connect with us

Artificial Intelligence

OpenAI and Microsoft negotiations require definition of “artificial general intelligence”

Published

6 minute read

From The Deep View

Ian Krietzberg

 

OpenAI’s bargaining chip 

A couple of relatively significant stories broke late last week concerning the — seemingly tenuous — partnership between OpenAI and Microsoft.
The background: OpenAI first turned to Microsoft back in 2019, after the startup lost access to Elon Musk’s billions. Microsoft — which has now sunk more than $13 billion into the ChatGPT-maker — has developed a partnership with OpenAI, where Microsoft provides the compute (and the money) and OpenAI gives Microsoft access to its generative technology. OpenAI’s tech, for instance, powers Microsoft’s Copilot.
According to the New York Times, OpenAI CEO Sam Altman last year asked Microsoft for more cash. But Microsoft, concerned about the highly publicized boardroom drama that was rocking the startup, declined.
  • OpenAI recently raised $6.6 billion at a $157 billion valuation. The firm expects to lose around $5 billion this year, and it expects its expenses to skyrocket over the next few years before finally turning a profit in 2029.
  • According to the Times, tensions have been steadily mounting between the two companies over issues of compute and tech-sharing; at the same time, OpenAI, focused on securing more computing power and reducing its enormous expense sheet, has been working for the past year to renegotiate the terms of its partnership with the tech giant.
Microsoft, meanwhile, has been expanding its portfolio of AI startups, recently bringing the bulk of the Inflection team on board in a $650 million deal.
Now, the terms of OpenAI’s latest funding round were somewhat unusual. The investment was predicated on an assurance that OpenAI would transition into a fully for-profit corporation. If the company has not done so within two years, investors can ask for their money back.
According to the Wall Street Journal, an element of the ongoing negotiation between OpenAI and Microsoft has to do with this restructuring, specifically, how Microsoft’s $14 billion investment will transfer into equity in the soon-to-be for-profit company.
  • According to the Journal, both firms have hired investment banks to help advise them on the negotiations; Microsoft is working with Morgan Stanley and OpenAI is working with Goldman Sachs.
  • Amid a number of wrinkles — the fact the OpenAI’s non-profit board will still hold equity in the new corporation; the fact that Altman will be granted equity; the risks of anti-trust scrutiny, depending on the amount of equity Microsoft receives — there is another main factor that the two parties are trying to figure out: what governance rights either company will have once the dust settles.
Here’s where things get really interesting: OpenAI isn’t a normal company. It’s mission is to build a hypothetical artificial general intelligence, a theoretical technology that is pointedly lacking in any sort of universal definition. The general idea here is that it would possess, at least, human-adjacent cognitive capabilities; some researchers don’t think it’ll ever be possible.
There’s a clause in OpenAI’s contract with Microsoft that if OpenAI achieves AGI, Microsoft gets cut off. OpenAI’s “board determines when we’ve attained AGI. Again, by AGI we mean a highly autonomous system that outperforms humans at most economically valuable work. Such a system is excluded from IP licenses and other commercial terms with Microsoft, which only apply to pre-AGI technology.”
To quote from the Times: “the clause was meant to ensure that a company like Microsoft did not misuse this machine of the future, but today, OpenAI executives see it as a path to a better contract, according to a person familiar with the company’s negotiations.”
This is a good example of why the context behind definitions matters so much when discussing anything in this field. There is a definitional problem throughout the field of AI. Many researchers dislike the term “AI” itself; it’s a misnomer — we don’t have an actual artificial intelligence.
The term “intelligence,” is itself vague and open to the interpretation of the developer in question.
And the term “AGI” is as formless as it gets. Unlike physics, for example, where gravity is a known, hard, agreed-upon concept, AGI is theoretical, hypothetical science; further, it is a theory that is bounded by resource limitations and massive limitations in understanding around human cognition, sentience, consciousness and intelligence, and how these all fit together physically.
This doesn’t erase the fact that the labs are trying hard to get there.
But what this environment could allow for is a misplaced, contextually unstable definition of AGI that OpenAI pens as a ticket either out from under Microsoft’s thumb, or as a means of negotiating the contract of Sam Altman’s dreams.
In other words, OpenAI saying it has achieved AGI, doesn’t mean that it has.
As Thomas G. Dietterich, Distinguished Professor Emeritus at Oregon State University said: “I always suspected that the road to achieve AGI was through redefining it.”

After 15 years as a TV reporter with Global and CBC and as news director of RDTV in Red Deer, Duane set out on his own 2008 as a visual storyteller. During this period, he became fascinated with a burgeoning online world and how it could better serve local communities. This fascination led to Todayville, launched in 2016.

Follow Author

Alberta

Schools should go back to basics to mitigate effects of AI

Published on

From the Fraser Institute

By Paige MacPherson

Odds are, you can’t tell whether this sentence was written by AI. Schools across Canada face the same problem. And happily, some are finding simple solutions.

Manitoba’s Division Scolaire Franco-Manitobaine recently issued new guidelines for teachers, to only assign optional homework and reading in grades Kindergarten to six, and limit homework in grades seven to 12. The reason? The proliferation of generative artificial intelligence (AI) chatbots such as ChatGPT make it very difficult for teachers, juggling a heavy workload, to discern genuine student work from AI-generated text. In fact, according to Division superintendent Alain Laberge, “Most of the [after-school assignment] submissions, we find, are coming from AI, to be quite honest.”

This problem isn’t limited to Manitoba, of course.

Two provincial doors down, in Alberta, new data analysis revealed that high school report card grades are rising while scores on provincewide assessments are not—particularly since 2022, the year ChatGPT was released. Report cards account for take-home work, while standardized tests are written in person, in the presence of teaching staff.

Specifically, from 2016 to 2019, the average standardized test score in Alberta across a range of subjects was 64 while the report card grade was 73.3—or 9.3 percentage points higher). From 2022 and 2024, the gap increased to 12.5 percentage points. (Data for 2020 and 2021 are unavailable due to COVID school closures.)

In lieu of take-home work, the Division Scolaire Franco-Manitobaine recommends nightly reading for students, which is a great idea. Having students read nightly doesn’t cost schools a dime but it’s strongly associated with improving academic outcomes.

According to a Programme for International Student Assessment (PISA) analysis of 174,000 student scores across 32 countries, the connection between daily reading and literacy was “moderately strong and meaningful,” and reading engagement affects reading achievement more than the socioeconomic status, gender or family structure of students.

All of this points to an undeniable shift in education—that is, teachers are losing a once-valuable tool (homework) and shifting more work back into the classroom. And while new technologies will continue to change the education landscape in heretofore unknown ways, one time-tested winning strategy is to go back to basics.

And some of “the basics” have slipped rapidly away. Some college students in elite universities arrive on campus never having read an entire book. Many university professors bemoan the newfound inability of students to write essays or deconstruct basic story components. Canada’s average PISA scores—a test of 15-year-olds in math, reading and science—have plummeted. In math, student test scores have dropped 35 points—the PISA equivalent of nearly two years of lost learning—in the last two decades. In reading, students have fallen about one year behind while science scores dropped moderately.

The decline in Canadian student achievement predates the widespread access of generative AI, but AI complicates the problem. Again, the solution needn’t be costly or complicated. There’s a reason why many tech CEOs famously send their children to screen-free schools. If technology is too tempting, in or outside of class, students should write with a pencil and paper. If ChatGPT is too hard to detect (and we know it is, because even AI often can’t accurately detect AI), in-class essays and assignments make sense.

And crucially, standardized tests provide the most reliable equitable measure of student progress, and if properly monitored, they’re AI-proof. Yet standardized testing is on the wane in Canada, thanks to long-standing attacks from teacher unions and other opponents, and despite broad support from parents. Now more than ever, parents and educators require reliable data to access the ability of students. Standardized testing varies widely among the provinces, but parents in every province should demand a strong standardized testing regime.

AI may be here to stay and it may play a large role in the future of education. But if schools deprive students of the ability to read books, structure clear sentences, correspond organically with other humans and complete their own work, they will do students no favours. The best way to ensure kids are “future ready”—to borrow a phrase oft-used to justify seesawing educational tech trends—is to school them in the basics.

Paige MacPherson

Senior Fellow, Education Policy, Fraser Institute
Continue Reading

Artificial Intelligence

AI is accelerating the porn crisis as kids create, consume explicit deepfake images of classmates

Published on

From LifeSiteNews

By Jonathon Van Maren

“Ten years ago it was sexting and nudes causing havoc in classrooms,” writes Sally Weale in a chilling new report at the Guardian. “Today, advances in artificial intelligence (AI) have made it child’s play to generate deepfake nude images or videos, featuring what appear to be your friends, your classmates, even your teachers. This may involve removing clothes, getting an image to move suggestively or pasting someone’s head on to a pornographic image.”

I have been covering the rise of the next horrific manifestation of our collective porn crisis here at LifeSiteNews since 2019, when I warned that the rise of “deepfakes” would inevitably result in people making artificial pornography of their peers. Just a few years later, I reported on stories of middle-schoolers making deepfake pornography of kids they attended class with; last year, I reported on the rise of “nudify” apps that can digitally undress people in photographs, and the trauma, bullying, and inevitable sexual blackmail that has resulted.

The Guardian report reveals how swiftly this crisis is escalating. One teacher described an incident in which a teenage boy took out his phone, chose a social media image of a girl from a neighboring school, and used the “nudify” app to digitally remove her clothes. The teacher was shocked to see that the boy wasn’t even hiding his actions, because he didn’t see what he was doing as shocking, or even shameful. “It worries me that it’s so normalized,” she said. Other students reported the boy, his parents were contacted, and the police were called. The victimized girl was not even told.

The crisis is global. “In Spain last year, 15 boys in the south-western region of Extremadura were sentenced to a year’s probation after being convicted of using AI to produce fake naked images of their female schoolmates, which they shared on WhatsApp groups,” Weale writes. “About 20 girls were affected, most of them aged 14, while the youngest was 11.”

A similar situation unfolded in Australia, where 50 high school students had deepfake images distributed; in the United States, 30 female students in New Jersey discovered that “pornographic images of them had been shared among their male classmates on Snapchat.”

The mother of one student in Australia said that “her daughter was so horrified by the sexually explicit images that she vomited.” In the United Kingdom, the problem has exploded overnight:

A new poll of 4,300 secondary school teachers in England, carried out by Teacher Tapp on behalf of the Guardian, found that about one in 10 were aware of students at their school creating “deepfake, sexually explicit videos” in the last academic year. Three-quarters of these incidents involved children aged 14 or younger, while one in 10 incidents involved 11-year-olds, and 3% were younger still, illustrating just how easy the technology is to access and use. Among participating teachers, 7% said they were aware of a single incident, and 1% said it had happened twice, while a similar proportion said it had happened three times or more in the last academic year. Earlier this year, a Girlguiding survey found that one in four respondents aged 13 to 18 had seen a sexually explicit deepfake image of a celebrity, a friend, a teacher or themselves.

Predictably, teachers are also being targeted. Girls and women are left shattered by this victimization. Laura Bates, author of The New Age of Sexism: How the AI Revolution Is Reinventing Misogyny, writes: “It feels like someone has taken you and done something to you and there is nothing you can do about it. Watching a video of yourself being violated without your consent is an almost out-of-body experience.” Boys, meanwhile, are engaging in criminal behavior often without even knowing it. In the world they have grown up in, pornography is normal – and this is merely the next step.

The experts that Weale interviews are, as usual, at a loss of what can be done about this crisis. They emphasize education, while admitting that this is the equivalent of taking a water pistol to a raging forest fire. They are skeptical that guidelines or bans around technology at school will help. Understandably, educators are demoralized and even despairing. Pornography and sexting have already transformed schools. Deepfake pornography is now making an already ugly crisis far more personal, and there is no indication that the problem can be stopped without dramatic action.

The good news is that the first step in this direction has already been taken in the U.K. On November 3, the government  tabled the Crime and Policing Bill in Parliament. It includes an amendment criminalizing pornography featuring strangulation or suffocation – usually referred to as “choking” – with legal requirements for tech platforms to block this content from U.K. users.

This is the first time a genre of pornography has been criminalized on the basis that even if it is consensual, it genuinely harms society. That is an encouraging precedent, because it applies to virtually all hardcore pornography – and certainly to the “nudification” apps that are set to make middle school a hyper-sexualized hell for women and girls.

The porn industry is destroying society. We must destroy it first.

Featured Image

Jonathon’s writings have been translated into more than six languages and in addition to LifeSiteNews, has been published in the National PostNational ReviewFirst Things, The Federalist, The American Conservative, The Stream, the Jewish Independent, the Hamilton SpectatorReformed Perspective Magazine, and LifeNews, among others. He is a contributing editor to The European Conservative.

Continue Reading

Trending

X